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Abstract

Nowadays, the cloud computing paradigm has given rise to
new and unconventional application deployments on elas-
tic compute infrastructures. For instance, IaaS providers are
willing to support a diverse set of computing workloads,
ranging from service-oriented deployments to HPC appli-
cations. As a result, the underlying systems software has to
be generic enough to support lightweight, efficient execution
for a wide range of applications. In this work, we examine
communication methods within a single VM container that
ease data exchange between co-located VMs without sacri-
ficing upper-layer API compatibility.
We present V4VSockets, a generic, socket-compliant frame-
work for intra-node communication in the Xen hypervisor.
The transport layer is based on V4V, a simple hypercall-
based mechanism to transfer data. Our framework resides
within the hypervisor, providing a dispatch logic to commu-
nication, contrary to the common Xen concept of decoupling
the control and data plane using a privileged VM.

V4VSockets improves intra-node data exchange in terms of

both latency and throughput by a factor of 4.5. To demon-

strate the applicability of V4VSockets, we spawn a VM with

a GPU device assigned to it and deploy a remote GPU accel-

eration benchmark on co-located VMs. Preliminary results

show that V4VSockets boosts the transfer throughput by a

factor of 7 (at best) while adding an overhead of 15% com-

pared to native execution.

1. Introduction

Modern cloud data centers provide flexibility, dedicated exe-

cution, and isolation to a vast number of service-oriented ap-

plications (i.e. high-availability web services, core network

services, like mail servers, DNS servers etc.). These infras-
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tructures, built on clusters of multicores, offer huge process-

ing power; this feature makes them ideal for mass deploy-

ment of compute-intensive applications.

In the HPC context, applications often scale to a large num-

ber of nodes, leading to the need for a high-performance in-

terconnect to provide low-latency and high-bandwidth com-

munication. In the cloud context, distributed applications are

executed in a set of Virtual Machines (VMs) that are placed

in physical nodes across the cloud data center. These VMs

suffer communication overheads [5, 10, 13] and are unaware

of their physical placement – this presents a problem, be-

cause application instances running on the same physical

node but on different VMs are not able to exploit local-

ity. Additionally, the advent of Software Defined Networks

and Network Function Virtualization (commonly referred to

as SDN/NFV) has given rise to examine approaches where

lightweight VMs exchange data with co-located peers to

perform network processing operations. We build on this

trend and explore intra-node communication mechanisms to

achieve efficient, low-overhead data exchange between co-

located VMs.

We introduce V4VSockets, a socket-compliant, high-performance

intra-node communication framework for co-located VMs.

V4VSockets simplifies the data path between co-located

VMs: this is achieved by creating a peer-to-peer communica-

tion channel between a VM and the hypervisor. V4VSockets

eliminates the overhead of page exchange/mapping and en-

hances throughput by moving the actual copy operation to

the receiver VM. Our framework improves security by op-

erating in a shared-nothing policy; pages are not shared be-

tween VMs – the hypervisor is the only one responsible for

transferring data to the peer VM.

The contribution of this paper can be summarized as follows:

• We introduce V4VSockets, an efficient, socket-compliant,

high–performance intra-node communication framework

(Section 3).

• We evaluate V4VSockets using generic micro-benchmarks

and compare it to conventional communication paths

(Section 4). We find that V4VSockets outperforms the

generic method of intra-node communication and scales

efficiently with a large number of VMs both in terms of

throughput as well as latency.



• We discuss the applicability of our framework, presenting

a real-life use case: we deploy an HPC application stencil

over rCUDA [8], a remote GPU execution stack over

V4VSockets.

The rest of this paper is organized as follows: first, we

lay groundwork in Section 2 by presenting the basic con-

cepts of intra-node communication frameworks, briefly dis-

cussing the essentials of Xen and related research. Section 3

describes the design and implementation of V4VSockets,

while Section 4 presents a detailed evaluation of its perfor-

mance, with regards to latency, throughput, and scaling. We

discuss how V4VSockets enables VM GPU sharing by de-

ploying rCUDA over our framework (Section 4.2) and con-

clude, presenting possible future endeavors (Section 5).

2. Background and Motivation

In this section, we briefly describe design choices for intra-

node communication in a virtualized environment, providing

background information on the key communication compo-

nents of Xen. We mostly focus on the control and data han-

dling in the network stack. Additionally we discuss related

research, presenting various approaches and their trade-offs.

Overview of the Xen Architecture

Xen [1] is a popular hypervisor, based on the ParaVirtual-

ization (PV) concept. Data access is handled by privileged

guests called driver domains that enable VMs to interact

with the hardware based on the split driver model. Driver

domains host a backend driver, while guest VM kernels host

frontend drivers, exposing a per-device class API to guest

user– or kernel–space.

In Xen, memory is virtualized in order to provide contiguous

regions to OSs running on guest domains. This is achieved

by adding a per-domain memory abstraction called pseudo-

physical memory. So, in Xen, machine memory refers to

the physical memory of the entire system whereas pseudo-

physical memory refers to the physical memory that the OS

in any guest domain is aware of.

To efficiently share pages across guest domains, Xen ex-

ports a grant mechanism. Xen’s grants are stored in grant

tables and provide a generic mechanism for memory shar-

ing between domains. Network device drivers are based on

this mechanism in order to exchange control information and

data. Two guests setup an event channel between them and

exchange events that trigger the execution of the correspond-

ing handlers. I/O rings are ring buffers, a standard lock-

less data structure for producer-consumer communication.

Through I/O rings, Xen provides a simple message-passing

abstraction built on top of the grant and event channel mech-

anisms.

Xen PV Network I/O:

The common method of VM communication in Xen is

through the PV network architecture. Guest VMs host the

netfront driver, which exports a generic Ethernet API to

kernel-space. The driver domains host a hardware specific

driver and the netback driver, which communicates with

the frontend using the event channel mechanism and injects

frames to a software bridge.

Figure 1. Generic intra-node communication in Xen.

Data flow in and out of the VM using the grant mechanism,

while notifications are implemented using event channels,

the virtual IRQ mechanism that Xen provides. Less-critical

operations are carried out by Xenstore (interface numbering,

feature exchange etc.).

To communicate with each other, VMs that co-exist in the

same VM container have to cross through the software

bridge in a driver domain. Figure 1 presents the data path

of two VMs exchanging data. Data movement is realized us-

ing shared pages that are set up using the grant mechanism.

Each transmission request contains a grant reference and an

offset within the granted page. This allows transmit and re-

ceive buffers to be reused, preventing the TLB from needing

frequent updates. To receive packets, the guest domain in-

serts a receive request into the ring, indicating where to store

a packet, and the driver domain places the contents there.

Related Work

A major source of intra-node communication overhead is the

complex data path between co-existing VMs. Network traf-

fic between peer VMs is redirected via the driver domain, re-

sulting in a significant performance penalty. Packet transmis-

sion and reception involves traversal of the TCP/IP network

stack and the invocation of multiple Xen hypercalls. Several

optimizations have been proposed regarding this limitation:

shared memory techniques, provided by the Xen hypervi-

sor are exploited to facilitate data exchange between VMs.

Using a pool of shared pages for direct packet exchange

seems a lot more efficient than traversing the network com-

munication path via the driver domain. XenSockets [14] and

IVC [2] provide a basic, one way communication channel

using socket semantics, introducing a new address family

type. XenLoop [12], on the contrary, intercepts calls to local

VMs through the Linux netfilter mechanism and establishes

a full-duplex data channel between peers to efficiently ex-

change data. In XWay [3] the authors define a new virtual

device that establishes direct communication between VMs,

bypassing the driver domain completely. MMNet [9] elimi-

nates copies by mapping the entire kernel address space of a

VM into the address space of its communicating peer.

Apart from intrusive methods like the above, there has been

great effort in optimizing the existing network stack in Xen:



for instance, Menon et al. [4] improve network performance

by introducing copies instead of page remapping and using

advanced memory features such as superpages and global

page mappings.

Additionally, the CPU scheduler in the hypervisor has a ma-

jor influence on the latency of communication between co-

located VMs. If the CPU scheduler is unaware of communi-

cation requirements of co-located VMs, then it might make

non-optimal scheduling decisions that increase the inter-VM

communication latency.

We build on this strand of the literature, but instead of opti-

mizing the data path through the driver domain, we bypass it,

using the hypervisor as the network medium. In the follow-

ing sections we describe the design of our framework and

show that when VMs exchange data, crossing the hypervi-

sor seems much more efficient than installing a direct shared

memory path or optimizing driver domain intervention.

3. Design and Implementation

In this section we describe V4VSockets, a highly effi-

cient intra-node communication framework in the Xen plat-

form. Our approach builds on V4V, part of the XenClient

project [11]. V4V is an abstract mechanism provided by the

Xen hypervisor that supports basic communication primi-

tives.

We describe V4VSockets, a generic socket layer for the

V4V transport mechanism that enables applications running

on VMs’ userspace to communicate with other VMs co-

existing on the same VM container. V4VSockets consists of

a device driver to expose the socket API to user-space and

the V4V transport mechanism provided as an extension to

the Xen hypervisor. An analogy to the TCP/IP protocol suite

is shown in Figure 2.

In what follows, we discuss the V4VSockets architecture,

briefly presenting the design overview, as well as implemen-

tation details.

Figure 2. V4VSockets and TCP/IP

3.1 Design Overview

V4VSockets is built as a full-stack protocol framework that

supports peer-to-peer communication between co-located

VMs. Contrary to the common approach of decoupling com-

munication to a privileged VM, leaving only security issues

to be handled by the hypervisor, we choose to bypass the

intermediate layer and use the hypervisor as the control and

the data plane. Data flow between two VMs without the

intervention of a third VM, providing better isolation and

scalability. To provide an architectural overview, we briefly

describe how the operations are realized in each layer.

Application layer: One of the most important aspects of

our design is the API compatibility with generic concepts,

namely, the socket interface. Specifically, we aspire to pro-

vide a low-overhead socket communication framework to

applications running in co-located VMs without the need to

refactor, re-implement or recompile them.

Thus, in V4VSockets, the application layer refers to the

common socket-layer calls (socket(),bind(), connect()

etc.) which forward the relevant actions and arguments to the

transport layer.

The Transport layer in our approach resides in the VM

kernel. Essentially it implements the socket calls and the

communication primitives of the communication protocol

over the network medium (Xen in our case). Specifically,

the transport layer handles the virtual connection semantics

between peer VMs that need to communicate, is in charge

of fragmenting and sending upper-layer packets by issuing

hypercalls to the hypervisor (network layer), and provides a

notification mechanism to the VM’s user-space for receiving

packets, as well as error control.

The Network/Link layer resides in the hypervisor, providing

encapsulation of upper-layer messages to packets that will be

transmitted to their destination, according to V4V semantics,

and packet delivery. This layer is in charge of transmitting

the packet to its destination, which in our case consists of

a memory copy. Thus, in the case of a packet send, the

hypervisor places data into the relevant memory space of the

receiver and notifies the Transport layer about an incoming

packet.

In the following section we describe the V4VSockets frame-

work in detail and present essential parts of the implementa-

tion, focusing mainly on the data exchange mechanism.

3.2 Implementation details

The core part of our framework is the transport layer, im-

plemented as a VM kernel module, where all calls from

userspace are translated into V4V hypercalls and issued to the

hypervisor (the network/link layer). V4V provides basic sup-

port for communication through the following hypercalls:

• register/unregister: This call is used when a new

socket is created and provides the necessary memory

space to transfer data.

• send: This call is used when a send call is issued, provid-

ing the relevant structures to the hypervisor that, in turn,

realizes the transfer.

• notify: When data is placed correctly, or when there’s

a notification that needs attention, the VM kernel issues



this call and the hypervisor handles all necessary steps to

complete the operation (e.g. receive calls).

The intriguing part of V4VSockets is mainly focused on

the data path; we base our framework on the v4v_ring

structure (Figure 3), containing a static, pre-allocated ring

buffer that essentially simulates the network medium. This

buffer follows the generic producer-consumer concept, with

two pointers rx and tx that are altered by the VM and

hypervisor respectively.

This buffer is allocated in the VM kernel and registered to

the hypervisor with the bind() system call. Essentially, this

translates into a register hypercall and, thus, the machine

frames that comprise the ring buffer are stored and mapped

in Xen, forming a shared memory region between the VM

kernel and the hypervisor.

The accept() system call initializes a receive operation:

the application listens to a specific port for incoming pack-

ets.Once data have been written to the ring, the hypervisor

updates the tx pointer. Following a recvmsg() system call,

the VM kernel copies data from the ring space to a local stag-

ing buffer. Additionally, it updates the rx pointer (to free up

space in the ring) and copies the received packet to user-

space.

The sendmsg() system call initiates a send operation: the

VM kernel creates an iovector from the userspace argu-

ments, packs the data into a V4V message and issues the

send hypercall. The hypervisor copies the data into the ring

of the receiver VM, updating the tx pointer.

An example of a data exchange between two peer VMs is

shown in Figure 3.

Figure 3. V4VSockets overview.

In V4VSockets, userspace applications issue generic socket

calls using a custom address family constant instead of

AF_INET. To keep compatibility for applications that have

this constant hard-coded, we wrap the initial socket() sys-

tem call around a library that re-issues the call with our

custom address family. The rest of the calls (e.g. bind(),

listen(), accept() etc.) use the socket descriptor pro-

vided by the initial call; as a result, the API remains intact.

4. Performance evaluation

In this section we describe the experiments we performed

to analyze the behavior of V4VSockets and identify specific

characteristics of our approach compared to the common se-

tups used for intra-node communication in virtualized envi-

ronments.

We setup a host machine with 2x Intel Xeon X5650 (Chipset

5520) and 48GB RAM (@1333MHz) and perform two basic

experiments using microbenchmarks, in order to illustrate

the merits and shortcomings of our approach without the

noise of application-specific communication patterns. We

also perform a third real-life experiment using a CUDA

application from the GPGPU domain.

We setup the host as a VM container and spawn up to 16

single core VMs (VM1 VM2, ...,VM16). We use NetPIPE [6]

as a microbenchmark, in order to compare V4VSockets to

the default TCP/IP over netfront/netback case. We deploy

the microbenchmark between VMs (16 separate instances,

VM1 to VM2, VM3 to VM4 and so on).

4.1 Microbenchmark evaluation

Figure 4 and Figure 5 plot the respective measurements

when two VMs (VM1 to VM2) exchange messages. Figure 4

shows that the latency achieved by V4VSockets for a 2 Byte

message is improved by 81% compared to the generic case.

Specifically, the latency of the split driver model is 86 us,

while V4VSockets completes the same task at 16 us. This is

mainly due to the processing overhead of the TCP/IP stack,

as well as the inefficient data path through the driver domain

(Section 2), which is bypassed in our optimized transport

mechanism.
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Figure 4. V4VSockets latency

In terms of throughput (Figure 5), V4VSockets outperforms

the default case as well. V4VSockets peaks a maximum

throughput of 2299 MB/s, 4.5x better than the split driver,

which performs poorly at 501 MB/s for 1 MB messages.

To examine how V4VSockets scale with a various num-

ber of VMs exchanging messages we measure the system’s

throughput for 2, 4, 8 and 16 VMs communicating in pairs

(Figure 6). The aggregate throughput increases proportion-

ally to the number of communicating VMs. For instance, two

VMs are able to exchange 512KB messages at ≈ 2 GB/s,

while 16 VMs achieve 8x aggregate throughput for the same

message size (≈ 16 GB/s).

Based on our approach (Section 3), V4VSockets performs

three data copies when transferring messages across: VM1–
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to–Xen, Xen–to–VM2-kernel, VM2-kernel–to–VM2-userspace.

This is a design choice: VM1 notifies through a system call

and a hypercall that there is a message for VM2. Xen copies

data from VM1 userspace into VM2 and notifies the kernel;

when the kernel wakes up, data are already in the processor’s

cache, and thus, data flow directly to VM2 userspace. As a

result, we are able to reach more than half of the system’s

memory bandwidth1, bringing memory-copy-like bandwidth

measurements to VM–to–VM message exchange.

2VMs

4VMs

8VMs

16VMs

  0

  2000

  4000

  6000

  8000

  10000

  12000

  14000

  16000

  18000

64K 128K 256K 512K 1M 2M

T
hr

ou
gh

pu
t (

M
B

/s
)

Message Size (Bytes)

Figure 6. V4VSockets aggregate throughput

To validate that the system sustains acceptable performance

when a large number of VMs put pressure on the memory

bus, we examine the effect our data exchange mechanism has

on latency. When 16 VMs exchange small messages in pairs,

the round trip latency remains as low as 16 us, verifying the

scalability of our approach.

4.2 GPU-enabled VMs

In this section, we demonstrate the merit of V4VSockets on

a real-life benchmark from the GPU applications domain.

We apply our efficient transport mechanism to rCUDA [8], a

framework for enabling remote and transparent GPU accel-

eration. Building on existing frameworks and V4VSockets,

we enable VMs to benefit from a GPU-equipped VM resid-

ing in the same VM container, without complicated setups,

or disruptive and expensive techniques such as IOV.

1 We performed a stream microbenchmark and measured 27 GB/s as the
maximum memory bandwidth.

We use two VMs, VM1 acting as the rCUDA server, and

VM2 as the client. In order to provide GPU access to the

rCUDA server domain, we assign the GPU device to this

VM using PCIe passthrough. Finally, we consider two cases:

the generic transport mechanism using TCP/IP over the split

driver model (rCUDA generic) and V4VSockets (rCUDA

over V4VSockets). As a baseline, we perform the exact same

experiment without the intervention of rCUDA, directly on

VM1 (passthrough)2.

We use a common HPC application stencil, the single-

precision matrix-matrix product, provided in CUDA by the

NVIDIA samples [7].

passthrough
rCUDA over V4VSockets
rCUDA generic
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This experiment includes the following procedure: two

copies of the input matrices from node’s main memory to

GPU device memory, the product execution on the GPU and

finally one copy of the output matrix back to main mem-

ory. The normalized total time of execution of the matrix-

matrix product benchmark is depicted in Figure 7. The X

axis presents the array size multiplied by 32 KB.

We observe that V4VSockets performs really close to the

baseline case. For an input matrix size of 1089 x 32 KB

(2112 x 4224 float type elements) V4VSockets adds a

15% overhead compared to running locally, whereas the

generic case adds a 70% overhead. This is essentially our

goal: through V4VSockets and rCUDA, VMs can seam-

lessly share a GPU device in a single VM container with

a minimum overhead compared to the generic case. Given

that full stack HPC applications use large matrix sizes, our

framework can provide the necessary bandwidth to offload

GPU execution with the minimum overhead due to remote

execution.

To elaborate more on the impact of V4VSockets to the im-

provement in the execution time, we plot the throughput

achieved when copying one of the input matrices from the

machine’s main memory to the GPU device memory (es-

sentially this is a cudamemcpy() call) in Figure 8. We ob-

serve that the peak throughput is 3.79 GB/s in our baseline

experiment, while the respective throughput in the remote

V4VSockets case is 2.46 GB/s. However, for a matrix size

2 We validate the measurements in a non-virtualized environment with an
identical GPU device. We did not observe significant difference in terms of
performance compared to the passthrough VM execution.
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of 34 MB (2112 x 4224 float type elements) V4VSockets

outperforms the generic case by a factor of 7 (0.35 GB/s).

5. Conclusion

In this work, we present the design and implementation of

V4VSockets, a framework for efficient, low-overhead intra-

node communication in co-located VMs. V4VSockets by-

passes the driver domain completely and uses the hypervisor

as the transport medium kernel and a backend on the hyper-

visor. V4VSockets is open-source software, available online

at https://github.com/HPSI/V4VSockets.

Experimental evaluation of our prototype has revealed the

following: (a) V4VSockets is able to saturate the memory

bus, outperforming the generic case of intra-node commu-

nication through netfront / netback drivers both in terms of

throughput and latency; (b) V4VSockets scales efficiently

with a large numbers of VMs; (c) through V4VSockets, VMs

are able to share a single GPU device using rCUDA, tak-

ing advantage of the efficient, low-overhead, data exchange

channel our system provides.

We believe that VM containers with efficient intra-node

communication features can host a wide variety of appli-

cations, especially in the device sharing context and the con-

cept of SDN/NFV. Achieving data exchange rates equivalent

to memory copies can disrupt the SDN world, leading to a

large number of deployment options. Additionally we plan

to extensively evaluate our approach in accelerator sharing

scenarios in order to provide seamless FPGA/GPU sharing

techniques for lightweight VMs.
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