
An Adaptive Bloom Filter Cache Partitioning
Scheme for Multicore Architectures

Konstantinos Nikas
School of Electrical and
Computer Engineering

National Technical University of Athens
knikas@cslab.ece.ntua.gr

Matthew Horsnell
School of Computer Science

University of Manchester
horsnelm@cs.man.ac.uk

Jim Garside
School of Computer Science

University of Manchester
jdg@cs.man.ac.uk

Abstract—This paper investigates the problem of partitioning
the last-level shared cache of multicore architectures. Contention
for such a shared resource has been shown to severely degrade
performance when running multiple applications. As architec-
tures incorporate more cores, multiple application workloads be-
come increasingly attractive, further exacerbating contention at
the last-level cache. Today, cache replacement policies, extensively
studied for uniprocessor systems, are being employed within new
multicore architectures with little, if any, adaptation. However
the parameters in these new systems are likely to be different.
The least recently used (LRU) policy, for example, which is widely
accepted as the best replacement policy in uniprocessor caches,
often results in poor resource sharing in a multicore system,
signalling the importance of reevaluating the effectiveness of these
policies in the new architectures.

This paper proposes Adaptive Bloom Filter Cache Partitioning
(ABFCP), a low-cost, dynamic cache partitioning mechanism
capable of better resource sharing at the last-level cache than
LRU, improving the performance of an eight-core system on
average by 5.92% over the LRU policy. Moreover, the proposed
scheme provides the equivalent performance benefits that could
be gained from almost a 50% increase in the last-level cache and
shows increasing benefit as the number of cores rises.

Index Terms—Cache partitioning, Bloom filters, Multicore
architectures.

I. INTRODUCTION

Improvements in silicon process technology have facilitated
the integration of multiple cores into modern processors and
it is anticipated that the number of cores on a single chip
will continue to increase in the future. Multiple application
workloads, attractive for utilising multicore processors, put
significant pressure on the memory system. This motivates the
need for more efficient use of the last-level shared cache in
order to minimize the expensive, in terms of both latency and
power, requests to off-chip memory. This paper investigates the
problem of partitioning the last-level cache in the presence of
multiple concurrently executing applications.

A key factor to the efficiency of a shared cache is the line
replacement policy. The majority of CMP systems today [10],
[12], [13] employ the least recently used (LRU) policy, widely
accepted as the best line replacement policy in uniprocessor
caches, or approximations thereof. The LRU policy, in the
context of a shared cache, implicitly partitions the cache by
allocating more space to the application with the highest
demand, i.e. many accesses to different entries. However,

not all applications benefit from exploiting additional cache
resources. A typical example is a streaming application, where
data is fetched into the cache, processed and then is unlikely
to be reused. A replacement policy, such as LRU, will naı̈vely
keep allocating resources to a streaming application, even
though there are no performance benefits. Consequently, other
concurrently running applications are deprived of resources
that they could have efficiently exploited.

In a multicore system several applications will be running
in parallel and the benefit to each one of obtaining addi-
tional cache resources will vary. Applications also exhibit
distinct phases during execution, each with varying cache
requirements. Therefore a dynamic partitioning of the last-
level shared cache, allocating cache resources in a way that
will maximise the overall system performance is attractive.
In this paper we propose the Adaptive Bloom Filter Cache
Partitioning (ABFCP) scheme which strives to achieve dy-
namic beneficial allocation. The last-level shared cache is
instrumented, using a combination of Bloom filters and coun-
ters, to determine how the concurrent applications will benefit
from additional cache resources. Based on this information,
the cache is repartitioned periodically and the information is
reset. This scheme, which incurs minimal hardware overhead,
around 5.5% over the area of a 4MB, 32-way associative L2
cache, improves performance over an LRU cache on average
by 5.92% for an eight-core system. Moreover, it provides the
equivalent performance benefits that could be gained from
almost a 50% increase in the last-level cache and shows
increasing benefit as the number of cores rises.

This paper is structured as follows: Section II outlines the
motivation for this work and Section III describes related
work. In Section IV the proposed ABFCP scheme is described.
Section V outlines our experimental methodology and Section
VI presents an evaluation of the proposed scheme. Finally,
Section VII concludes.

II. MOTIVATION AND BACKGROUND

An increase in cache space affects the performance of
each application differently. The amount of performance gain
in response to additional cache space can be described as
an application’s cache utility. As presented by Qureshi and
Patt [15], this cache utility metric can be used to classify



(a) High Utility (b) Low Utility (c) Saturating Utility

Fig. 1. Examples of different cache utility profiles.

applications into three categories; high, low and saturating.
Fig. 1 presents an example of this classification using three
benchmarks from the JavaGrande suite [17]. The cache size
is varied by changing the number of ways and keeping the
number of sets constant.

High utility applications, such as heap, continue to benefit
significantly from increases in cache resources as shown in
Fig. 1(a). As more ways, each 128KB, are added to the cache,
heap’s instructions per cycle (IPC) increases while its misses
per thousand instructions (MPKI) are reduced. On the other
hand, low utility applications, such as series shown in Fig. 1(b),
gain little or no performance gains from increasing the cache
space as the number of their misses remains stable. Finally,
saturating utility applications, such as lu shown in Fig. 1(c),
benefit from an initial increase in cache resources, then gain
no performance beyond a given cache size, where their misses
drop almost to zero.

When multiple applications execute concurrently in a multi-
core system there is an opportunity to exploit the differences in
their cache utility. To illustrate this, the following experiment
is performed. A dual-core system, where the two processors
share a 4MB, 32-way associative L2 cache, is used to execute
heap and sor from the JavaGrande benchmark suite [17]
in parallel (other parameters of the simulated system are
described in Section V). The former is an application of
high utility, while the latter is an application of low utility.
The cache is statically partitioned each time between the two
applications by allowing each core to use a specific subset of
the available cache ways.

Fig. 2 compares the IPC of each application and the total
IPC, labelled IPCSum, to those achieved when the two cores
share the cache using the LRU replacement policy. The overall
system performance is clearly affected by altering the number
of ways that each application is allowed to replace lines within.
Because, in general, heap has a lower IPC than sor, allocating
the majority of the L2 cache ways to sor causes IPCSum to
increase by 10% compared to the LRU policy.

This static partitioning, however, has two main drawbacks.
Firstly, to partition the cache correctly, the system must be
aware of each application’s profile, as it is possible to degrade

Fig. 2. Effect of statically partitioning a 4MB (32-way associative) cache
when executing heap (high utility) and sor (low utility).

the performance. This is illustrated in this example, when
sor is allowed to use only 12 out of the 32 available cache
ways and IPCSum is 5% worse compared to the performance
achieved when LRU is used. A second disadvantage is that the
partitions remain the same during the execution, even though
applications are known to have distinct phases of behaviour.
These provide a strong motivation to develop a scheme that can
partition a shared cache dynamically, based on an execution
profile acquired at run-time, with the ability to re-partition the
cache should the phase of an application change.

III. RELATED WORK

Different partitioning schemes for shared CMP caches have
been developed. The majority of them attempt to exploit the
stack property of the LRU policy [11], according to which an
access that hits in an LRU managed N-way associative cache
is guaranteed to also hit if the cache had more than N ways,
provided that the number of sets remains constant. Suh et al.
[18] first described a mechanism that counts the cache hits to
the different recency positions, ranging from MRU to LRU,
on a per process basis. The proposed partitioning algorithm,
invoked every 5 million cycles, uses these counters to estimate
gains (losses) for each process in case it is assigned more
(less) cache space and repartitions the cache in an attempt to
maximise the overall performance by reducing off-chip misses.



Fig. 3. Example of non-optimal partitioning

Recently Qureshi and Patt [15] introduced “Utility-based
Cache Partitioning” (UCP) by implementing utility monitors
(UMONs), which shadow the tag array of the L2 cache for
each processor and essentially emulate a private L2 cache per
core. Counters kept for accesses to each way in the UMONs
are read every 5 million cycles by the partitioning algorithm,
which then allocates cache ways to the running applications
attempting to minimise the total number of misses for the
next period. To keep the hardware overhead low, each UMON
monitors only a small subset of the cache sets and enforces
the same partition for the whole cache.

Dybdahl et al. [5] proposed “Cache-Partitioning Aware
Replacement Policy” (CPARP). They add a shadow register
together with the shadow hit and LRU hit counters for each
processor in each cache set. The shadow register stores the
last evicted tag and thus can identify misses that would have
been hits had the processor been allowed to occupy one more
cache way. Every time such a miss is identified, the shadow
hit counter is incremented, while the other counter tracks the
accesses that hit in the LRU position. Every 2,000 misses the
maximum value of the shadow hit counters is compared to
the minimum value of the LRU hit counters. If it is found to
be greater, then the allocation of the process associated with
the shadow counter, i.e. the process with the greatest desire
for one more way, is increased while the allocation of the
process associated with the LRU counter, i.e. the process with
the smallest loss if it is deprived of one way, is decreased.

The UCP scheme is able to repartition the cache by al-
locating any amount of ways to each core, whereas CPARP
only allows ±1 way changes. On the other hand, CPARP, by
monitoring the shadow misses in each cache set, is able to
enforce a different partition for each set while UCP enforces
the same partition for the whole cache. This means that
CPARP can adapt better to the requirements of each processor,
as it is known that applications could use only a subset of the
cache sets as shown in Fig. 3. In this example, by enforcing
the same partition for the whole cache, Application B has been
deprived of valuable resources.

However, CPARP is not able to handle efficiently workloads
with non-convex miss rate curves. For example, consider sor,
whose LRU stack profile is shown in Fig. 4. According to

Fig. 4. LRU stack profile for sor

this profile, 75% of the hits occur on the MRU position, 24%
on the 22nd and 1% on the 23rd recency position. According
to the stack property of the LRU policy, if sor is allowed to
occupy less than 22 ways then the hits that occur on the 22nd
and 23rd position will become misses. CPARP is only able
to detect shadow misses, which means that it will be able
to identify these misses and consider assigning more cache
resources to sor, if and only if sor occupies 21 ways. On the
other hand, UCP, by using the UMONs, which monitor all the
cache ways, and a lookahead partitioning algorithm, is able
to identify the characteristics of sor and make the appropriate
partitioning decisions.

Based on these observations we have designed a novel cache
partitioning scheme that attempts to combine the advantages of
both CPARP and UCP. More specifically, it attempts to identify
the characteristics of the running applications accurately like
UCP, while maintaining the flexibility of CPARP that will
allow to dynamically partition the cache on a set granularity.

Finally, partitioning, as a mechanism for reducing memory
pressure, has also been proposed at the memory controller
level [16] or to provide quality of service [20]. Additionally,
by exposing cache usage information the OS can guide thread
scheduling [3], [6] to improve cache sharing.

IV. ADAPTIVE BLOOM FILTER CACHE PARTITIONING

A. Overview

This section presents the Adaptive Bloom Filter Cache
Partitioning (ABFCP) scheme, a novel low-cost cache par-
titioning scheme based on the concept of Bloom filters [2].
A Bloom filter is a structure for maintaining probabilistic set
membership. It trades off a small chance of false positives
for a very compact representation. The Bloom filters used in
this scheme are based on the “Partial-Address Bloom Filter”
developed by Peir et al. [14].

Fig. 5(a) illustrates a system employing the ABFCP scheme.
A partitioning module is attached to the L2 shared cache and
monitors all core accesses. The partitioning module needs to
track the actual cache occupancy of each application running
in each core, and therefore a core ID field is added alongside
the address tag of each cache line. Whenever a core brings a
line into the cache, its ID is stored in the core ID field. This



(a) Overview. (b) Cache monitoring components.

Fig. 5. The Adaptive Bloom Filter Cache Partitioning scheme

field is necessary in order to keep a record of the misses and
hits for each core, which is subsequently used to repartition
the cache.

B. Tracking misses and hits

The partitioning module tracks both misses and hits on a
per core basis. However, there is no need to track all misses in
general, but only those that may have been hits had the core
been allowed to use more cache ways. This subset of misses
is defined as “far-misses” and is monitored by Bloom filters.

More specifically, a Bloom Filter Array (BFA) with 2k bits
is added to each set for each core. When a tag is rejected from
the cache, its k least significant bits are used to index a bit of
the BFA, which is then set. On a cache miss, the appropriate
entry of the BFA is looked up using the k least significant
bits of the requested tag. If the array bit is set, then a far-miss
has been detected. Consider the example shown in Fig. 5(b),
where an application is only allowed to occupy three cache
ways, which initially hold the tags a, b and c with a being
the LRU. When d is brought into the cache, a is replaced and
its k least significant bits are used to set the appropriate bit in
the BFA associated with the core executing the application. If
tag a is requested again, then it is resolved as a miss and a
lookup in the BFA reveals that the bit indexed by the k least
significant bits of a is set, thus identifying a far-miss.

When the BFA bit is found to be clear, it is certain that the
requested tag was not stored in the cache in the past. On the
contrary, if the bit is found to be set, there is a possibility of
a false positive, due to the problem known as “aliasing”. As
only k bits of the tag are used to index the BFA, it is possible
for more than one tag to map to the same array bit. This
means, that the system may detect a far-miss for an address
that was never brought into the cache. Moreover, in the system
described in Fig. 5(b), the order in which the BFA bits are set
is not recorded, and so, there is no information on the order in
which lines were rejected from the cache. At the same time,
the number of true entries in the BFA could be higher than
the associativity of the cache. Therefore, when a far-miss is

detected, it is not possible to deduce how many more ways the
core should have been allocated for that miss to become a hit.
That information could have been acquired if the Bloom filter
was extended with a set of counters and registers. However,
as these extensions would increase the hardware overhead and
the complexity of the system, they were rejected. For these
reasons, far-misses are defined as misses that may have become
hits, had the application been allocated more cache ways in
general. In practice, they are used to decide whether a core’s
allocation should be increased by one way.

The cache partitioning mechanism also tracks hits to the
LRU position per set for each core. In total, two counters per
core are used for each cache set:

Cfar-miss : incremented when the BFA detects a far-miss.
CLRU : incremented when a cache access hits on the

LRU entry owned by the core.

Exploiting the stack property of the LRU, these counters
provide estimates of performance gains or losses possible
by changing a core’s allocation. More specifically, according
to this property, if the allocation of a core was reduced by
one way, then the hits in the LRU position would become
misses. Therefore, for this case the value of the CLRU counter
estimates the performance loss, as shown in (1). As mentioned
previously, the Cfar−miss counter could include far-misses
that would become hits if the core’s allocation was increased
by more than 1 way. Therefore a factor, a = 1− waysoccupied

associativity ,
is introduced to scale the value of the Cfar−miss counter and
the performance gain in this case is shown in (2).

lose1=CLRU (1)
gain1=a× Cfar−miss (2)

Finally, it should be noted that the update and lookup of the
Bloom filters and the counters are not on the critical path,
as the cache response to a processor request does not depend
on them. Therefore, the cache access times should remain the
same.



TABLE I
NUMBER OF POSSIBLE PARTITIONS

Processor Cores Possible Partitions
2 3
4 19
8 1107
16 5196627

C. Partitioning Algorithm

At the end of each monitoring period the partitioning
algorithm is executed. As the total number of cache ways does
not change, the possible partitions that need to be evaluated
can be deduced from (3), where ∆xi is the change in the
allocation of core i and N is the number of cores.

N∑
i=1

∆xi = 0, ∆xi = {−1, 0, 1} (3)

The number of solutions of (3) is shown in Table I for
different numbers of cores. It is obvious that the algorithm
does not scale efficiently, as for 16 cores the partitioning
module needs to evaluate over 5 million different partitions.
Even for 8 cores, the comparison of 1107 partitions is not
possible, as it needs to be done for every cache set. Therefore,
a linear algorithm that selects the best partition or a good
approximation thereof has been developed and is listed in
Algorithm 1.

Algorithm 1 Linear Partitioning Algorithm
cores = N
for core i = 0 to N do

gain1[i] = a× Cfar−miss

lose1[i] = CLRU

end for
order gain1, lose1 from min to max
while max gain1 > min lose1 do

increase allocation[i] by 1, decrease allocation[j] by 1
remove i and j from gain1, lose1

cores -= 2
if cores ≤ 1 then

return allocation;
end if

end while
return allocation;

The algorithm reads the hit and miss counters of each core.
Then, in each iteration, the maximum gain value is compared
against the minimum loss value. If the former is greater, then
the allocation of the core associated with that Cfar−miss

counter is increased by one way, while the core associated with
that CLRU counter is deprived of one cache way. The process
is repeated until no cores are left to be considered or the
maximum gain value is smaller than the minimum loss value.
In the worst case N/2 comparisons need to be performed,
where N the number of cores. Therefore, the complexity of
this algorithm is O(N).

TABLE II
BASE CONFIGURATION.

Processor cores 2, 4, 8 configurations
single issue in-order, 5 stage pipeline

32-bit RISC ISA
Level 1 caches Private instruction and data caches

32KB, 4-way set-associative, 32B line size
1 cycle access latency

Unified shared 4MB, 32-way set-associative, 32B line size
Level 2 cache 16 cycle access latency

Memory Maximum 32 outstanding requests
100 cycle access latency

Finally, the system guarantees that each core is allocated at
least one cache way in each set to avoid problems like thread
starvation. The partitioning algorithm is executed every one
million cycles and at the end of the repartitioning phase the
counters and the Bloom filters are reset.

D. Changes to Replacement Policy

To enforce the decisions made by the partitioning algorithm
the baseline LRU policy is modified to enable way partitioning
[4], [9], [18]. On a cache miss, the replacement mechanism
counts the number of cache blocks in the accessed set that
belong to the miss invoking core. If this number is equal
to or greater than the number imposed by the partitioning
algorithm then the LRU block belonging to that core is
rejected. Otherwise, the LRU block of an over-allocated core is
evicted. If the number of ways allocated to a core is increased,
then the new ways are consumed only on cache misses. This
lazy reallocation allows the cache to retain the previously
stored cache blocks until the space that they occupy is actually
needed.

V. EXPERIMENTAL METHODOLOGY

We use an in house cycle-level simulator, modelling the
JAMAICA chip multiprocessor architecture [8], [19]. The
instruction set is based on the 32-bit Alpha ISA. The sim-
ulation platform models the caches, buses and memory in
sufficient detail to account for contention, queue blocking and
access delays. Table II shows the parameters of the baseline
configuration used for simulation.

For each evaluation we use a set of nine Java benchmarks:
ft, mg and cg are taken from the NAS parallel benchmark
suite [7] while heap, sor, sparse, series, crypt and
lu are taken from the JavaGrande benchmark suite [17]. Dur-
ing simulation, multiprogrammed workloads are run within a
Java virtual machine, ported from the Jikes RVM [1], ensuring
each single benchmark is executed within a single processor
core in the simulator. The benchmarks chosen exhibit varying
cache utility profiles, with three benchmarks fitting into each
of the categories, high-utility (ft, heap, mg), low-utility
(sor, sparse, series), and saturating-utility (crypt, cg,
lu), as described in Section II.

VI. RESULTS AND ANALYSIS

We evaluate ABFCP for a dual, a quad and an eight-core
system with a shared 4MB, 32-way associative L2 cache. Fig.



(a) Performance over LRU for a dual core system (b) Average cache occupancy for heap and sparse run on a dual core
system

Fig. 6. Results for using ABFCP in a dual-core system.

(a) Performance over LRU for a quad core system (b) Performance over LRU for an eight-core system

Fig. 7. Results for a quad and an eight-core system

6(a) compares the performance of the proposed scheme to
the baseline LRU policy for the throughput metric, IPCSum.
The bar labeled gmean represents the geometric mean of the
IPCSum for the 36 benchmark combinations. The maximum
improvement of 20.3% occurs for the sor-sparse combination
while the maximum degradation of 7.3% occurs for the lu-
sparse combination. In general the performance degrades by
over 1% for only 5 cases. On average, the proposed scheme
improves the performance only by 1.41%, as for many com-
binations ABFCP achieves similar performance to LRU.

To gain a better insight on the effects of using the ABFCP
scheme, Fig. 6(b) shows the average number of ways allocated
to heap and sor when executed in parallel for both ABFCP and
the baseline LRU policy. In the system employing the LRU
policy, sor uses more cache ways in average than heap for
the first 500 million cycles. At this point however, heap is
allocated up to almost 24 out of the 32 available cache ways.
As the execution moves forward, sor starts acquiring more and
more cache resources until it occupies 22 ways in average.
On the other hand, ABFCP is able to identify the different
requirements of each application and almost from the start
allocates 22 cache ways to sor. This is in accordance with

sor’s profile shown in Fig. 4 as well as with the observations
from the static cache partitioning results presented in Fig. 2.

As it was mentioned before, ABFCP achieves the same
performance with baseline LRU for many cases for the dual-
core system. We believe that this is due to the cache being
big enough to accommodate the working sets of both com-
peting applications. To test this claim the proposed scheme
is evaluated for a quad and an eight-core system and the
results are presented in Fig. 7 for all the available bench-
mark combinations (126 and 9 combinations respectively). In
Fig. 7(a) it is obvious that the proposed scheme improves
the system performance for the majority of the simulated
benchmark combinations. The performance is worse than LRU
for only 14 out of the 126 combinations and only in one
case the degradation is over 1% (-1.4%). The geometric mean
is 1.031, which means that the proposed scheme improves
the performance of a quad-core system by 3.1% on average.
Fig. 7(b) compares ABFCP with baseline LRU for an eight-
core system. In this case the performance is improved by
5.92% on average. The x-axis of Fig. 7(b) shows which of
the 9 benchmarks was not included in the executed mix of 8
workloads.



Fig. 8. Effect of different BF array sizes for a dual-core system

A. Effect of Varying the Bloom filter Size

The L2 cache used in the previous simulations is 4MB, 32-
way associative and each cache block can hold eight words.
Assuming a 32-bit physical address space, the length of each
tag is 15 bits. All the previous simulations were performed
assuming that only the 5 least significant bits of the tag were
used to index the Bloom filter arrays. If all the 15 tag bits
were used, then the size of each array would be 215 = 32Kb.
This means that for the whole cache the overhead for using
the Bloom filters would be:

4096 sets×32 Kb/(sets×processor) = 16 MB/processor (4)

Of course this overhead renders the implementation of the
scheme impossible. However as it was explained in section
IV-B, due to their simplicity, the filters’ information on far-
misses is not expected to be strictly accurate and factor a has
been introduced to scale down the value of the Cfar−miss

counters. Therefore, the system should be able to tolerate a
few extra filter errors which will be introduced if the BF arrays
are shrunk. Fig. 8 compares the performance of a dual core
system when 3, 5, 7 and 10 bits are used to index the BF
arrays to the case where ‘ideal’ filters indexed by all 15 bits
of the tags are used. Reducing the length of the index from
15 to 10 or 7 bits has no effect on the performance of the
system, while a 3-bit index seems to be too small, for a few
combinations at least. Based on these results the 5-bit index
can be selected, as it causes degradation only for 5 out of the
36 benchmark combinations and only ‘noticeable’, i.e. greater
than 1%, degradation in one case. The size of each BF array is
therefore reduced to 25 = 32bits. Consequently, the hardware
overhead for the whole cache is reduced to :

4096 sets× 32 b/(sets× processor) = 16 KB/processor (5)

B. Hardware Overhead of ABFCP

Each processor uses one BF array and two counters for
each cache set. As the counters are reset every one million
cycles, their length can be set to 20 bits. However, all the
previous simulations have been performed assuming that it
can be reduced further to 8 bits. Fig. 9 shows the effect of

Fig. 9. Comparison of 8 and 32-bit counters in a quad-core system

TABLE III
STORAGE OVERHEAD PER PROCESSOR

BF arrays (4096 sets * 32bits) 16KB
Counters (4096 sets * 2 counters * 8 bits) 8KB

Total overhead 24 KB
Area of L2 cache (240KB tags + 4MB data) 4336KB

% increase in area 0.55%

using 8-bit instead of 32-bit counters in the ABFCP scheme
for a quad-core system. The geometric mean of the results
for a quad-core system, shown in Fig. 9, is equal to 1.0002,
which means that the reduction of the counters’ length has no
significant effect on the performance of the cache partitioning
scheme. Similar conclusion can be drawn for dual and eight
eight-core systems.

In section VI-A the hardware overhead of each Bloom filter
was analysed and reduced from 32KB to 32b. The storage
overhead per processor for a 4MB, 32-way associative cache,
assuming a 32-bit physical address space, is presented in Table
III. Each processor requires 24KB of storage overhead or
0.55% of the area of the baseline 4MB cache. At the same
time, ABFCP requires a processor ID for each cache entry.
The length of each ID is log2N bits, where N is the number
of processors.

For an eight-core system sharing the 4MB, 32-way associa-
tive L2 cache, the overhead of the IDs will be 4096 × 32 ×
3b = 48KB, an increase of 1.1%. Therefore the total storage
overhead for an eight-core system is 8×24+48 = 240KB, an
increase of 5.5% over the L2 area. In addition to the storage
bits, adders are needed to increment the counters of each
processor and the partitioning algorithm requires a comparator
circuit. So the true overhead will be slightly greater than
indicated here. However this is still proportionately small.

C. Comparison to LRU

To evaluate the effectiveness of ABFCP as a solution to
increasing the system performance, it needs to be compared
against increasing the cache size, which is the usual approach
taken by system designers. Therefore, an eight-core system
sharing a 4MB, 32-way associative L2 cache and using the
ABFCP scheme was compared to other eight-core systems
sharing bigger L2 caches employing the baseline LRU policy.



Fig. 10. Comparison of ABFCP against bigger caches employing the LRU
policy

The results are presented in Fig. 10.
The L2 cache is increased by adding extra ways. Each way

adds 128KB of data and 7.5KB of tags, an overhead of
135.5KB. The storage overhead of ABFCP was previously
calculated for an eight-core system and found to be 240KB,
slightly less than adding 2 ways to the baseline cache. Fig.
10 shows that a 4352KB, 34-way associative cache using the
LRU policy performs worse than the baseline 4MB, 32-way
associative cache combined with the ABFCP scheme. The
geometric mean for that case is 0.957, which means that the
smaller cache with ABFCP performs better on average by
4.3%. Moreover, Fig. 10 reveals that for LRU to perform
better than ABFCP for almost all the simulated benchmark
combinations, the baseline cache needs to be increased to
6MB, an increase of 50%. And even in that case, the average
improvement of LRU over ABFCP is only 0.95%. Therefore,
it appears that ABFCP offers a cost effective solution to
improving the overall system performance.

VII. CONCLUSION

Cache design has been extensively studied for uniprocessors
and many design choices have migrated to the new multicore
architectures. A typical example is the employment of the LRU
replacement policy, or approximations thereof, which parti-
tions the cache among competing applications on a demand
basis. However, it is possible that this partitioning results in
sub-optimal sharing of the cache, as happens when one of the
competing processes is a streaming application. This paper
proposes Adaptive Bloom Filter Cache Partitioning (ABFCP),
a novel low cost scheme that identifies the cache requirements
of each running application and divides the cache between
them attempting to improve the overall system performance.
Our evaluation shows that for an eight-core system sharing a
4MB, 32-way associative L2 cache ABFCP outperforms LRU
on average by 5.92% while requiring 5.5% storage overhead.
Moreover, for LRU to achieve similar performance to ABFCP,
the cache has to be increased by around 50%, making ABFCP
an attractive solution.

Future work includes a detailed evaluation of ABFCP
against other cache partitioning schemes, like UCP and
CPARP. Moreover, ABFCP was evaluated here for multicore

architectures executing multiprogrammed workloads. Future
research will target multithreaded workloads for CMP systems
with SMT cores. Additionally, as power is becoming an
increasingly significant constraint in computer design, it is
necessary to evaluate the effect of the cache partitioning
mechanism on the power consumption of the system.

REFERENCES

[1] B. Alpern, S. Augart, S. M. Blackburn, and others. The Jikes research
virtual machine project: building an open-source research community.
IBM Systems Journal, 44(2):399–417, 2005.

[2] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, July 1970.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache
contention on a chip multiprocessor architecture. In Proc. of the 11th
International Symposium on High-Performance Computer Architecture,
pages 340–351, 2005.

[4] D. Chiou, L. Rudolph, and S. Devadas. Dynamic cache partitioning via
columnization. In Proc. of Design Automation Conference, Los Angeles,
2000.

[5] H. Dybdahl, P. Stenström, and L. Natvig. A cache-partitioning aware
replacement policy for chip multiprocessors. In Proc. of 2006 ACM
Conference on High Performance Computing, pages 22–34, 2006.

[6] A. Fedorova. Operating system scheduling for chip multiprocessor
architectures. PhD thesis, Harvard University, 2006.

[7] M. A. Frumkin, M. Schultz, H. Jin, and J. Yan. Implementation of the
NAS Parallel Benchmarks in Java. Technical report, NASA Advanced
Supercomputing Division, 10 2002.

[8] M. J. Horsnell. A chip multi-cluster architecture with locality aware task
distribution. PhD thesis, School of Computer Science, The University
of Manchester, 2007.

[9] R. Iyer. CQoS: A framework for enabling QoS in shared caches of
CMP platforms. In Proc. of the 18th annual international conference on
Supercomputing, pages 257 – 266, 2004.

[10] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power 5 chip: A Dual-
Core Multithreaded Processor. IEEE Micro, 24(2):40–47, March 2004.

[11] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117,
1970.

[12] C. McNairy and R. Bhatia. Montecito: a dual-core, dual-thread Itanium
processor. IEEE Micro, 25(2):10–20, March 2005.

[13] A. Mendelson, J. Mandelblat, S. Gochman, A. Shemer, R. Chabukswar,
E. Niemeyer, and A. Kumar. CMP implementation in systems based on
the Intel Core Duo Processor. Intel Technology Journal, 10(2):99–107,
May 2006.

[14] J. K. Peir, S. C Lai, S. L. Lu, J. Stark, and K. Lai. Bloom filtering
cache misses for accurate data speculation and prefetching. In Proc. of
the 16th international conference on Supercomputing, pages 189–198,
New York, New York, USA, 2002.

[15] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high performance runtime mechanism to partition shared
caches. In Proc. of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 423–432, Orlando, Florida, USA, 2006.

[16] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Effective
Management of DRAM Bandwidth in Multicore Processors. In Proc.
of the 16th International Conference on Parallel Architecture and
Compilation Techniques, pages 245–258, 2007.

[17] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande
benchmark suite. In Proc. of the 2001 ACM/IEEE conference on
Supercomputing, pages 8–17, Denver, Colorado, 2001.

[18] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. Journal of Supercomputing, 28:7–26, 2004.

[19] G. Wright. A single-chip multiprocessor architecture with hardware
thread support. PhD thesis, Department of Computer Science, The
University of Manchester, 2001.

[20] Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni,
and Don Newell. CacheScouts: Fine-Grain Monitoring of Shared Caches
in CMP Platforms. In Proc. of the 16th International Conference on
Parallel Architecture and Compilation Techniques, pages 339–352, 2007.


